.. _bibliography: Bibliography ============ Dataset & Simulation References ------------------------------- .. [AdaptiveStrategy] Doerr, S. and De Fabritiis, G. `On-the-fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations `_ . Journal of Chemical Theory and Computation, 10(5). 2064-2069. (2014). .. [ACEMD] Harvey, M.J. et al. `ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale `_ . Journal of Chemical Theory and Computation, 5(6). 1632-1639. (2009). .. [TIP3P] Jorgensen, W.L. et al. `Comparison of simple potential functions for simulating water `_ . J. Chem. Phys. 926(79). (1983). .. [CHARM22Star] Piana, S., et al. `How Robust Are Protein Folding Simulations with Respect to Force Field Parameterization? `_ Biophys J. 100. 47-49. (2001). .. [AMBER_ff_99SB_ILDN] Hornak, V. et al. `Comparison of multiple Amber force fields and development of improved protein backbone parameters `_ . Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. (2006). CGnet References ---------------- .. [CGnet] Wang, J. et al. `Machine Learning of Coarse-Grained Molecular Dynamics Force Fields `_ . ACS Cent. Sci. 5, 755–767 (2019). .. [CGSchnet] Husic, B. E. et al. `Coarse graining molecular dynamics with graph neural networks `_ . J. Chem. Phys. 153, 194101 (2020). .. [TransCGSchnet] Charron, N. E. et al `Navigating protein landscapes with a machine-learned transferable coarse-grained model `_ - arXiv:2310.18278 (2023) Neural Network Architectures & Implementations ---------------------------------------------- .. [Schnet] Schütt, K. T. et al. `SchNet – A deep learning architecture for molecules and materials `_ J. Chem. Phys. 148(24), 241722. (2018). .. [PT_geom_schnet] https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/nn/models/schnet.html .. [Physnet] Unke, O. T. et al. `PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments and Partial Charges. `_ Journal of Chemical Theory and Computation, 15(6). 3678–3693. (2019). .. [MACE] Batatia, I. et al. `MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields `_ Advances in Neural Information Processing Systems, 35. 11423-11436 (2022)